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Abstract
Reaction–diffusion equations deliver a versatile tool for the description
of reactions in inhomogeneous systems under the assumption that the
characteristic reaction scales and the scales of the inhomogeneities in the
reactant concentrations separate. In the present work, we discuss the
possibilities of a generalization of reaction–diffusion equations to the case
of anomalous diffusion described in terms of continuous-time random walks
with decoupled step length and waiting time probability densities, the first
being Gaussian or Lévy, the second one being an exponential or a power law
lacking the first moment. We consider a special case of an irreversible or
reversible A → B conversion and show that only in the Markovian case of
an exponential waiting time distribution can the diffusion term and the reaction
term be decoupled. In all other cases, the properties of the reaction affect
the transport operator, so the form of the corresponding reaction–anomalous
diffusion equations does not closely follow the form of the usual reaction–
diffusion equations.

1. Introduction

Many phenomena in systems out of equilibrium can be described using a reaction–diffusion
picture. Examples can be found in various disciplines, above all in chemistry but also in
physics, ecology and others. Examples from physics include the trapping and annihilation of
excitons and the electron–hole recombination in solids. In ecology, there are e.g. the predator–
prey relations. Reaction–diffusion processes with both normal and anomalous diffusion have
been extensively studied over the past decades. However, for the latter, a general theoretical
framework is still absent. In this paper, we discuss a special case of monomolecular conversion
for subdiffusion and show that the mesoscopic approach leads to equations different in form
from what could be regarded as a straightforward generalization of the reaction–diffusion
scheme.
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The mesoscopic approach leading to reaction–diffusion equations is valid if there is
a strong scale separation between the typical reaction scale and the size of the system’s
inhomogeneities. The corresponding reaction–diffusion equations (for normal diffusion)
typically have the form

∂Ci (t)

∂ t
= Ki�Ci ± κi C

n1
1 Cn2

2 · · · CnN
N , (1)

which simply follows by adding a diffusion term to a classical kinetic equation for the
corresponding reaction. Here, Ki denotes the diffusivity of the component i , the integer powers
n j correspond to the stoichiometry of the reaction, and κi denotes the corresponding reaction
rate.

However, many physical systems exhibit anomalous diffusion which is not adequately
described by Fick’s law [1]. Many cases of subdiffusion are successfully modelled within
the continuous-time random walk framework (CTRWs) with power-law on-site waiting time
distributions lacking the first moment. These distributions typically have the form w(t) ∝
t−1−α with 0 < α < 1. Examples include, among others, dispersive charge transport
in disordered semiconductors, contaminant transport by underground water and motion of
proteins through cell membranes. On the other hand, successful search strategies in animal
motion can be described in terms of Lévy walks or flights, often in combination with broad
waiting time distributions. Lévy flights are also used as a model for the transport on annealed
polymer chains [2, 3], which may be relevant for gene expression [4].

For anomalous diffusion, the Fickian diffusion equation is changed for an anomalous
diffusion equation involving fractional derivatives. For subdiffusion, the equation for the
concentration C(x, t) of diffusing particles reads

∂C(x, t)

∂ t
= Kα0 D1−α

t �C(x, t), (2)

with the corresponding (anomalous) diffusion coefficient Kα , where 0 Dβ
t stands for the operator

of a fractional Riemann–Liouville derivative,

a Dβ
x f (x) = dn

dxn

1

�(ν)

∫ x

a

f (x ′)
(x − x ′)1−ν dx ′ (3)

with n = [β] + 1 ([x] stands for the whole part of the number x) and ν = n − β . For a
Lévy flight, i.e. the random walk process with the power-law distribution of the step lengths,
λ(x) ∝ x−1−μ, the corresponding equation reads

∂C(x, t)

∂ t
= Kμ�

μ/2C(x, t), (4)

where �μ/2 stands for the Riesz symmetric fractional derivative acting on the spatial
variable [5]. For a ‘sufficiently well-behaved’ function f (x) it can be expressed through the
Liouville–Weyl derivative [6]:

�μ/2 f (x) = − 1

2 cos(πμ)

[
−∞ Dμ

x + x Dμ
∞

]
(5)

for μ �= 1/2, and for μ = 1/2 through the derivative of the Hilbert transform of f :

�1/2 f (x) = − d

dx

1

π

∫ ∞

−∞
φ(ξ) dξ

x − ξ
. (6)

Reactions under anomalous diffusion were discussed by several authors. However, most
attention was paid to the description of the elementary act of reaction on the microscopic
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scale [7–11]. Mesoscopic approaches were used e.g. in [12] for subdiffusion, where equations
of the type

∂Ci (r, t)

∂ t
= Ki,αi 0 D1−αi

t �Ci (r, t) + fi (7)

were postulated for different components in a multi-component system, and in [13, 14], where
front propagation was discussed for symmetric and asymmetric Lévy flights, respectively; see
also [15] and [4], where a Lévy diffusion term was added to a ‘normal’ reaction–diffusion
equation to describe target search processes on the DNA.

In what follows, we discuss the derivation of the reaction–anomalous diffusion equations
for a special case of the simple monomolecular conversion A → B for a CTRW transport
mechanism (where our approach however differs from that of our previous publication [16]).
We consider subdiffusion, Lévy flights and the combination of the two. Moreover, a reversible
conversion A � B is also considered. As we proceed to show, the Markovian situation of a
(symmetric) Lévy flight is described correctly by the reaction–superdiffusion equation

∂Ci (r, t)

∂ t
= Kμi�

μi/2Ci(r, t) + fi (8)

with Ci being A or B and the reaction terms fi = ±κA. On the other hand, the situation
for the non-Markovian subdiffusive transport is much more involved. The irreversible reaction
can be described by an equation for A with the transport term depending on the reaction rate,
and the equation for the reversible case cannot be cast in the form of something resembling a
reaction–diffusion equation.

The article is structured as follows. In section 2 we derive the equation for the time
evolution of the educt concentration A in an irreversible reaction. The behaviour of the product
concentration B is discussed in section 3. Section 4 is devoted to a mesoscopic approach to
reversible conversions.

2. The educt concentration in the irreversible conversion A → B

In what follows, we consider the situation where A-particles are converted into B at a constant
conversion rate κ independent of their position. Thus, the survival probability of a single
A-particle in the time interval [t ′, t] is A(t, t ′) = A(t − t ′) = exp[−κ(t − t ′)]. We
will use one-dimensional notation in the following; the generalization to higher dimensions
is straightforward. An example for this situation is the decay of a radioactive isotope in
groundwater, where the reaction and the transport mechanism are fully decoupled. We are
interested in the mathematical description of the situation, where the transport is given by a
decoupled CTRW process with given step length and waiting time distribution. Our derivation
of reaction–anomalous diffusion equations is parallel to the derivation of the pure anomalous
diffusion equations in [1].

We can put down an equation for the probability density function (pdf) of the positions x
of the particles, which have just made a jump at time t :

ηA(x, t) =
∫ ∞

−∞

∫ t

0
ηA(x

′, t ′)e−κ(t−t ′)ψ(x − x ′, t − t ′) dx ′ dt ′ + A(x, 0)δ(t). (9)

Here, ψ(x, t) is the jump pdf given by the probability density in space and time to make a jump
of length x at time t after the last jump. The meaning of the equation is that for whatever t > 0
an A-walker that has just arrived at x has come there from some other site, where it had survived
as A during the whole waiting time. The second term corresponds to the initial condition that
at time t = 0 all particles are assigned a new waiting time. Here, we have additionally assumed
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that the jump length distribution does not depend on the position of the walker and that the
waiting time pdf is constant in time and space. Furthermore, ψ(x − x ′, t − t ′) is assumed to be
decoupled ψ(x − x ′, t − t ′) = λ(x − x ′)w(t − t ′).

In order to get the equation of motion for the A-particles, i.e. for the concentration A(x, t),
we connect it to ηA(x, t) over

A(x, t) =
∫ t

0
dt ′ηA(x, t ′)e−κ(t−t ′)�(t − t ′), (10)

where �(t − t ′) is the probability of staying at site x for a time (t − t ′) after a jump. It is given
by

�(t) = 1 −
∫ t

0
dt ′w(t ′). (11)

Both equations (9) and (10) contain convolution integrals and can be solved with Fourier–
Laplace transforms. Using the shift theorem for the Laplace transform, we get

ˆ̃A(k, u) = [1 − w̃(u + κ)] Â(k, 0)

(u + κ)[1 − ˆ̃
ψ(k, u + κ)]

. (12)

Before we can return to the space and time domain, we have to specify the jump pdfs.
We are interested in the continuum limit of the equations corresponding to large scales and
long times, i.e. to (k, u) → (0, 0). A characteristic function of a Gaussian jump length
pdf with variance 2σ 2 will then be approximated by λ̂(k) � 1 − k2σ 2. A characteristic
function of a broad Lévy distribution, λ̂(k) = exp(−σμ|k|μ), can be approximated through
λ̂(k) � 1 − σμ|k|μ. For a broad waiting time pdf of a Pareto (power-law) type, w(t) �
ατα t−1−α , one infers the following asymptotics in Laplace space using a Tauberian theorem,
w̃(u) � 1 −�(1 −α)uατα . For the Markovian case, as exemplified by the exponential waiting
time pdf, w(t) = τ−1 exp(−t/τ), one has w̃(u) � 1 − uτ in the continuum limit, which
corresponds to α = 1. Equation (12) then can be rewritten in the following form:

u ˆ̃A(k, u)− Â(k, 0) = −(u + κ)1−α σμ

�(1 − α)τα
|k|μ ˆ̃A(k, u)− κ

ˆ̃A(k, u) (13)

simplifying the inverse transforms. For the inverse Fourier transformation, we use
F−1{−k2 f̂ (k)} = � f (x), and F−1{−|k|μ f̂ (k)} = �μ/2 f (x). Moreover, we introduce the
notation Kμ,α = σμ[τα�(1−α)]−1 for what later will be identified as the generalized diffusion
coefficient. The inverse Laplace transform of the left-hand side of the equation is simply the
first time derivative, since L−1{uĝ(u)− g(0)} = dg(t)/dt .

We first combine the Gaussian and Lévy distributed jump length pdf with an exponential

waiting time pdf. In this case, the pre-factor of ˆ̃A(k, u) in the first term on the right of
the equation does not depend on u. After inverse transforming the equation, it becomes a
time-independent operator acting on the concentration as a function of the coordinates. For a
Gaussian jump length distribution, our equation (13) now reads

∂A(x, t)

∂ t
= K2,1�A(x, t)− κA(x, t), (14)

and for Lévy flights,

∂A(x, t)

∂ t
= Kμ,1�

μ/2 A(x, t)− κA(x, t). (15)

Hence, the separation of the transport term and the reaction term is perfectly exact. For Lévy
flights, the Laplace operator is just changed for the Riesz–Weyl fractional derivative.
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Now, we turn to subdiffusion and consider a Gaussian distribution of the step lengths
(μ = 2) combined with a broad waiting time pdf of a Pareto type with 0 < α < 1. From
equation (13) we then get

∂A(x, t)

∂ t
= K2,αTt (1 − α, κ)�A(x, t)− κA(x, t), (16)

with the transport operator Tt(1 − α, κ)�, which is now time dependent,

Tt (1 − α, κ) f (t) = 1

�(α)

(
d

dt

∫ t

0

e−κ(t−t ′)

(t − t ′)1−α f (t ′) dt ′ + κ

∫ t

0

e−κ(t−t ′)

(t − t ′)1−α f (t ′) dt ′
)
. (17)

Its form follows from the shift theorem for the Laplace transform. We see that the reaction
parameter enters the transport term, and the transport operator Tt (1 − α, κ) reduces to a
fractional derivative only for κ = 0. Using the Laplace transform property of the Riemann–
Liouville fractional derivative, L−1{u−α f̃ (u)} = 0 D−α

t f (t) for α > 0, and using the shift
theorem, the temporal part of a transport operator (in its action on the arbitrary function of time
f (t)) can be transformed into a form [17]

Tt (1 − α, κ) f (t) = exp(−κ t)0 D1−α
t {exp(κ t) f (t)}. (18)

One can also easily formulate the equations for the combination of Pareto waiting times and
Lévy jumps being of the form

∂A(x, t)

∂ t
= Kμ,αTt (1 − α, κ)�μ/2 A(x, t)− κA(x, t), (19)

with �μ/2 denoting the symmetrized (Riesz–Weyl) spatial fractional derivative.
By the way, as shown in [18], an external force field can be included in the model over an

asymmetric jump length distribution leading to a fractional Fokker–Planck equation with the
time fractional operator changed for our operator Tt (1 − α, κ) and with an additional reaction
term.

3. Equations for the product concentration

Let us turn to the equation for the concentration of the B-particles. One can distinguish two
different cases: (i) either a B-particle takes over the waiting time of the A-particle that it was
converted from; or (ii) we assign it a new waiting time when it is produced. The former means
that the conversion is just a relabelling from the standpoint of diffusion and that conversion
and transport are totally independent. The latter is appropriate when A- and B-particles have
different diffusive properties, e.g. when they are trapped by different kinds of molecules. Then,
transport and conversion are partly coupled.

(i) The first case corresponds to the following approach:

ηB(x, t) =
∫ ∞

−∞
dx ′

∫ t

0
dt ′

{ [
ηB(x

′, t ′)+ ηA(x
′, t ′)

(
1 − e−κ(t−t ′)

)]

× ψ(x − x ′, t − t ′)
}

+ B(x, 0)δ(t), (20)

which expresses the fact that a B-particle that has just landed at x at time t has come from
a site x ′ at prior time t ′, where it had either come already as a B-particle or where it had
been converted from an A-particle. For the concentration of B-particles, we have

B(x, t) =
∫ t

0
dt ′

[
ηB(x, t ′)+ ηA(x, t ′)

(
1 − e−κ(t−t ′)

)]
�(t − t ′), (21)
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Figure 1. Shown are the concentrations of A-particles (solid lines) and B-particles (dashed lines)
for subdiffusion with conversion. The correct results (solution of equations (16) and (23)) are shown
without dots. They are compared to the solutions of the decoupled equations (7) shown with dots.
The parameters are: α = 0.75, κ = 0.001, K 2

α � 7.76 × 10−3. The times shown are t = 200 (left)
and t = 2000 (right).

with �(t) from equation (11). Now, a B-particle that is at site x at time t has come
there at a prior time t ′ either already as a B-particle or as an A-particle and has been
converted in (t − t ′). Equation (21) can also be solved with Fourier–Laplace transforms
and equations (9), (16) and (20). First, we get

ˆ̃B(k, u)+ ˆ̃A(k, u) = B̂(k, 0)+ Â(k, 0)

1 − ˆ̃
ψ(k, u)

1 − w̃(u)

u
, (22)

which is essentially the Fourier–Laplace transformed subdiffusion equation for the sum
of the concentrations C(x, t) = A(x, t) + B(x, t). This is due to the fact that we have
assumed a complete independence of the transport and the conversion and can already be
seen on adding the two approaches of equations (9) and (20). Using the corresponding
solutions for the concentration of A-particles, for a Poissonian waiting time pdf, one infers
an equation of the form (1) or (8). For a power-law waiting time pdf and the initial
conditions A(x, 0) = δ(x), B(x) = 0 we get

∂B(x, t)

∂ t
= K2,α 0 D1−α

t �B(x, t)+ κA(x, t)

+ K2,α
[

0 D1−α
t − Tt (1 − α, κ)

]
�A(x, t). (23)

The change of the concentration of the B-particles depends on the concentration of the
A-particles at all previous times. This is due to the fact that the B-particles are already
‘aged’ when produced and have a memory for the last jump they have made as an A-
particle because of the non-Markovian nature of the waiting time pdf. As mentioned
above, the combination with a Lévy distributed jump length pdf leads to the same result as
equation (23) with the Laplace operator just changed for its fractional generalization.
In figure 1 we compare the correct solutions, i.e. the solutions of equations (16) and (23),
with the solutions of the special cases of equation (7) for the conversion. We note an even
qualitative difference, so the latter justified only by analogy to the normal diffusion case
cannot be used as an approximation of the exact equations. In order to get these results, we
did not actually have to solve equations (16) and (23) because we could specify the solution
from the fact that C(x, t), the sum of the concentrations of A- and B-particles, fulfils a
pure subdiffusion equation. For the conversion reaction with the reaction independent of
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the transport, the concentrations are just given by A(x, t) = C(x, t) exp(−κ t), B(x, t) =
C(x, t)[1−exp(−κ t)], namely by the product of the overall particle concentration and the
survival probability or the conversion probability, respectively. The solution of the pure
subdiffusion equation for C(x, t) and the initial condition, C(x, 0) = δ(x) is known. It is
Fox’s H -function:

C(x, t) = 1

4K2,αtα
H 1,0

1,1

[
|x |√

K2,αtα

∣∣∣∣ (1 − α/2, α/2)
(0, 1)

]
. (24)

Fox’s H -function can be calculated using a series expansion [1]. The equations of the
form equation (7) were solved using a modification of a numerical scheme presented
recently by Yuste et al [19]. The scheme is a combination of a forward-time-centred-space
discretization and the Grünwald–Letnikov form of the fractional derivative.

(ii) Let us now consider the second case and assume that B-particles are assigned a new
waiting time at production. Here, we expect to get a decoupled equation of the form (7)
because the past as an A-particle is ‘forgotten’. We have to start from

ηB(x, t) =
∫ ∞

−∞

∫ t

0
ηB(x

′, t ′)ψ(x − x ′, t − t ′) dx ′ dt ′ + κA(x, t)+ B(x, 0)δ(t), (25)

and

B(x, t) =
∫ ∞

0
ηB(x, t ′)�(t − t ′) dt ′. (26)

This leads first to

ˆ̃B(k, u) = 1 − w̃(u)

u

κ
˜̂A(k, u)+ B̂(k, 0)

1 − ˆ̃
ψ(k, u)

, (27)

and then with a Gaussian jump length pdf and the same initial conditions as above to
∂B(x, t)

∂ t
= K2,αB 0 D1−αB

t �B(x, t)+ κA(x, t), (28)

the expected decoupled equation. We have denoted the diffusion exponent as αB in order
to emphasize that it is possibly different from that for the A-particles. By the way, instead
of the reaction term κA of the conversion we could have an arbitrary reaction term that
does not depend on the product concentration.

4. Reversible A � B reaction

Now, we turn to the case of a reversible conversion. We assume that no new waiting time
is assigned when a particle is converted. We denote the forward reaction rate by κ1 and the
backward rate by κ2. Then we have to start from

ηA(x, t) =
∫ ∞

−∞

∫ t

0

{[
ηA(x

′, t ′)e−κ1(t−t ′) + ηB(x
′, t ′)

(
1 − e−κ2(t−t ′)

)]

× ψ(x − x ′, t − t ′) dx ′ dt ′
}

+ A(x, 0)δ(t). (29)

An A-walker that arrives at x at time t has come from another site x ′ at a prior time t ′, where it
had come already as an A-particle and was not converted, or where it had come as a B-particle
and was converted. For the concentration, we have

A(x, t) =
∫ t

0
dt ′ηA(x, t ′)e−κ1(t−t ′)�(t − t ′)

+
∫ t

0
dt ′ηB(x, t ′)

(
1 − e−κ2(t−t ′)

)
�(t − t ′). (30)

7
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Figure 2. Shown is the result of the simulation: A-particles (solid line) and B-particles (dashed
line), and the numerical solution of the decoupled equations, equation (7) or (32): A-particles
(squares) and B-particles (dots). The parameters are: α = 0.75, Kα = 0.0138, κ1 = 0.01,
κ2 = 0.001. The times shown are t = 200 (left) and t = 2000 (right).

An A-particle at site x at time t has come to this site already as an A at time t ′ and has not
been converted and moved since, or it has come there as a B-particle, was converted and has
not moved in the meantime. Because of the ‘symmetry’ of the reaction, the equations for
the B-particles can be directly inferred from the equations for the A-particles. We can still
perform Fourier–Laplace transformation. Using a Gaussian jump length pdf, an inverse power-
law waiting time pdf, and the initial conditions A(x, 0) = δ(x), B(x, 0) = 0, we find for the
A-particles

ˆ̃A(u, k) = K2,αk2 + [(u + κ1)− (u + κ1)
1−αuα]×

[K2,αk2 + (u + κ2)α][K2,αk2(u + κ1)1−α + (u + κ1)]+ · · ·

· · · × [uα−1 − (u + κ2)
α−1] + (u + κ2)

α

+ [uα(u + κ1)1−α − (u + κ1)][(u + κ2)α − uα] . (31)

However, after the inverse Fourier–Laplace transformation, the equation of motion does not
take any simple form, let alone the form of a reaction–diffusion equation. The decoupled
scheme, equation (7), corresponds to a different equation,

ˆ̃A(u, k) = K2,αk2 + κ2uα−1 + uα

[K2,αk2 + uα][K2,αk2u1−α + u + κ1 + κ2] . (32)

We have made some simple simulations in order to test how the decoupled equations perform
for this case. For the conversion, the random walkers are independent, and we can simply
repeat the random walk procedure many times (106 times). We used the power-law waiting
time pdf with a cut-off at small times guaranteeing the normalization, w(t) = αταt−1−α for
t > τ and w(t) = 0 otherwise. The conversion is independent of the jumps and takes place
with a constant probability PA,(B) = [1 − exp(−κ1,(2)�t)] in each time step of length �t . We
can see in figure 2 that the coincidence with the correct result is somewhat better for large times
than in the case of an irreversible conversion.

5. Conclusions

We discussed generalizations of the reaction–diffusion scheme to the case of anomalous
diffusion for a special case of a simple conversion reaction A → B or A � B . Although the
reaction and the particle transport were assumed to be independent, the reaction term and the
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transport term do not separate in the case of subdiffusion. This means that the transport operator
in the corresponding equations depends on the properties of the reaction. The simple equations
with separated reaction and diffusion terms are not exact. Comparing the exact solution with
the equations with decoupled reaction and diffusion terms shows that the latter deliver a rather
poor approximation for the case of an irreversible reaction and perform somewhat better in the
reversible case.
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